Tuesday, March 16, 2021

Summoning the demon - AI in law enforcement

1955 IBM Supercomputer - 24,000 lbs, vacuum tubes, and state-of-the-art.
Today it fits into your pocket - photo Creative Commons

 “I’m increasingly inclined to think that there should be some regulatory oversight, maybe at the national and international level, just to make sure that we don’t do something very foolish. I mean with artificial intelligence we’re summoning the demon.” 
— Elon Musk at MIT’s AeroAstro Centennial Symposium

by Gregory Saville

A number of years ago I partnered with my friend, brilliant computer scientist friend, Nick Bereza, and we created an automated critical infrastructure protection software called ATRIM. Later, I did a stint with a tech startup in security. Thus, I was introduced into the glitzy world of tech and software development tradeshows. 

I saw firsthand an industry both exciting and volatile. Competition was fierce and missteps led to demise. Along the way, I discovered the unspoken hierarchy in the security technology world. Occupying the bottom were the junk science startups armed with a veneer of techno-gibberish. At the top was the bigboy of the high-tech playground: AI – Artificial Intelligence. At that time, security & law enforcement AI was little more than theory and conceptual White Papers. 

No longer. 

Hal 9000 AI computer - 2001: A Space Odyssey
- photo Creative Commons

There is an important math concept in the AI world known as the Laws of the Logarithms.

Logs are math functions used to speed up computations. One example is Moore’s Law which states that computer processing speeds double every two years. Thus, 10 units of computer memory become 20 and two years later become 40. In two decades those 10 units multiply at an exponential rate into 10,240… a thousand times higher. Logarithmic growth is the difference between narrow-AI (Apple’s “Siri” or Amazon’s “Alexi”) and deep-AI (Hal 9000 or Ava from Ex Machina) 


Sophie the Robot from Hansen Robotics was first activated on February 14, 2016, as a robotic allegory of AI. Her accomplishments as an independent, thinking machine are well documented. She sports “scripting software, a chat system, and OpenCog, an AI system designed for general reasoning”. In other words, she can chat with you on any topic, interpret ideas, and learn from one conversation to the next. 

AI experts tell us that Sophie is not conscious and is still responding based on a network of algorithms. One expert calculated her level of consciousness at about at the level of a single cell protozoa – hardly the stuff of Terminator. Deep AI is at least 200 years away, or so we are told.

I hope they told the Laws of Logarithms.

Cosmologist and theoretical physicist, Professor Stephen Hawking.
One of  the smartest people in the world warned us about AI
- photo courtesy of NASA


A colleague recently forwarded research on AI in Law Enforcement and it rekindled memories of those AI White Papers at the tech trade shows from not so long ago. Today they go by titles like “Artificial Intelligence and Robotics for Law Enforcement” and “Artificial Intelligence and Predictive Policing”

They are written by groups like Interpol, the UN Interregional Crime and Justice Research Institute, and funded by groups like the US National Science Foundation, names with considerable gravitas. They take AI in law enforcement and security seriously. 

They describe new technologies, some of which echo the similar junk science and techno-gibberish I saw years ago. The technologies they describe are mostly narrow AI – voice recognition, simultaneous location and mapping software, patrol drones, and predictive policing. They barely qualify as AI. None reach Sophie’s level of sophistication. So nothing to worry about, right?


Maybe…maybe not! Consider Predictive Policing. PredPol sends patrol officers to areas that it predicts will become an issue in the future. It uses weekly police calls for service to estimate where crime will happen. But calls for police service only show up in police files when residents call the police – and many minority communities will not call the police for fear or distrust. So areas of high crime, where fearful residents remain behind closed doors, never get police via PredPol since those police units will be sent elsewhere. That’s not exactly fair and equitable police services. 

To make matters worse, training for Predpol officers does not include what they should do differently when they get to the predicted crime hotspot. For example, if poor lighting is creating vulnerable areas for muggers, patrol officers are not taught Crime Prevention Through Environmental Design tactics to reduce opportunities for future assaults. Thus, if they find no one at the predicted hotspot, PredPol officers simply drive on to the next call. That’s not exactly intelligent policing, artificial or otherwise.

PredPol has even been criticized for amplifying racially biased patterns of policing... and all this considers the problems from only one form of narrow AI. Can you imagine the kinds of catastrophes that might unfold if things go wrong with immeasurably more powerful deep AI within law enforcement? 


Do law enforcement leaders dream that they can somehow control a sentient and fully conscious deep AI system that is immeasurably smarter than they are, linked globally to databases around the world, and capable of out-thinking and out-strategizing them? 

If so, watch the Academy Award-winning film Ex Machina and see how that turns out.

Some very smart people worry about the danger of deep AI – people like Stephen Hawking, Elon Musk, and Bill Gates. And in law enforcement and security, AI is the ultimate Faustian bargain! Is it really an intellectual cache worth cashing in on?

2 Replies so far - Add your comment

Anne Malloch said...

The key word for me is "artificial". No matter what developments take place, across centuries / decades / millennia the detail will always be what is created by the developers. Currently I am also concerned about the gender bias in developments in any AI. There is definitely a skewed bias against females and LGBTIQ people; many interesting articles and podcasts in relation to this issue. For example, why are there "Sophies" and also Google and Siri are female voices? Anne Malloch, Melbourne.

GSaville said...

How true, Anne. It is the developers we must work with. I suppose when Musk talks about regulations, he means regulating the developers of these products and not the developments themselves? And I totally agree about the gender bias in the AI language. Another area where developers must be more mindful. It's curious that the first scifi robots in popular media were all male (Gort from When the World Stood Still; Robbie from Forbidden Planet; Hal 9000 from 2001 Space Odyssey). Nowadays the developers seem to prefer female names. How things change!